Blog |
Discussing current issues in engineering
|
Hospitals have struggled to make space for influxes of COVID-19 patients since early in the pandemic. In counties around the country, continued surges of the virus now affect medical services for any individual who may need care, regardless of whether the individual suffers from COVID-19. Health districts have been forced to respond to diminished ICU bed capacities with creative measures. For New York State’s Long Island region, as for many other areas around the country, these measures have taken the form of temporary field hospitals.
The placid, wooded campuses of Long Island’s Stony Brook University (SBU) and SUNY College at Westbury host two of these temporary hospitals. The structures are hulking, frame-supported tents that add a combined 2,060 beds to the area’s medical network. Each tent is comprised of heavy-gauge vinyl panels that are individually tensioned and bolted to a metal framework. Prior to construction, engineers faced the difficult task of securing a stormwater control system for projects with two major flooding factors stacked against them. Firstly, the tents would be constructed on poorly drained turf fields and thereby posed a flood risk in the presence of a medium rainfall event. Secondly, the heavy-gauge vinyl material that would ensure a leak-proof final product also made rain cascade faster down the roofs of the tents—in this case, engineers anticipated a maximum rate of 1,230 gallons a minute. If left unchecked, this could accelerate damage to foundations or result in seeping from a structure’s base. A conventional frame-supported tent utilizes gutters and downspouts to catch and route stormwater. Project engineers needed to take this approach one step further by redirecting stormwater far away from the vulnerable turf. They selected 12-inch double-walled corrugated pipe for its flexibility and local availability. The pipe’s light weight allowed single workers to manipulate and secure large sections at a time, while its flexibility enabled ninety-degree connections aboveground. Beginning at the field hospital gutter systems, the corrugated pipe bends down and around the tent structures, passing underneath ambulance roadways and eventually into underground swales designed to contain large quantities of runoff and facilitate its percolation. The use of corrugated pipe enabled SBU and SUNY field hospital project engineers to confront flooding factors without sacrificing construction speed or versatility. In both cases, the whole construction process took about three weeks. The hospitals were ready to accept patients in April 2020. To learn more about stormwater drainage for SBU and SUNY field hospitals, click here. To learn more about the temporary fabric structures frequently used in field hospital designs, click here. Comments are closed.
|
Colman Engineering, PLCA professional engineering firm located in Harrisonburg, VA Archives
January 2022
|